您現在的位置💭: 首頁- 活動資訊

【百家大講堂】第228期🌜:等離子體納米顆粒的定製生長與組裝

【百家大講堂】第228期:等離子體納米顆粒的定製生長與組裝
  講座題目🏹:等離子體納米顆粒的定製生長與組裝 
  報  告 人🙎🏽‍♂️:Luis M. Liz-Marzán 
  時    間:2019年8月15日下午15:00-17:00
  地    點🏩:中關村校區研究生樓101報告廳 
  主辦單位🦸🏽😄:意昂平台👩‍🏭、材料學院
  報名方式:登錄意昂官网微信企業號---第二課堂---課程報名中選擇“【百家大講堂】第 228期🏘:等離子體納米顆粒的定製生長與組裝  ”
 
【主講人簡介】
 Luis M. Liz-Marzá教授博士畢業於聖地亞哥德孔波斯特拉大學👷🏿💱,並且在van't Hoff實驗室的從事過博士後的研究,目前是Ikerbasque研究教授和巴斯克生物材料合作研究中心(CIC biomaGUNE)的科學主任。自2015年起,他還擔任生物醫學研究網絡中心:生物工程、生物材料和納米醫學(Ciber BBN)的CIC生物基因節點的首席研究員。 Luis Liz-Marzán共同撰寫了450多篇研究論文和評論,其中引用次數超過40000次,h指數為102,被稱為Highly Cited Researcher(2014-2018)。他還共同撰寫了18本書,並共同發明了8項專利。他在25個不同國家的會議和200多場研討會上發表了250多場邀請講座👩‍👧,並組織了21次以上的國際會議。他連續兩次獲得ERC高級助學金(2011-2016; 2018-2023)⛹🏽,並獲得了許多研究獎項,如課程VITAE🔝,洪堡研究獎(2010年),杜邦科學獎(2010年)👨‍👩‍👧‍👧, Burdinola獎(2011年)🤸🏻‍♂️,首屆ACS納米講座獎(2012年)和Langmuir講座獎(2012年),ECIS  - 羅地亞獎(2013年),西班牙皇家化學學會獎章(2014年),Francqui主席獎(2014年) -2015)🙋🏽‍♂️,Georges Smets主席(2015年),Rey Jaime I基礎研究獎(2015年)🧃,Blaise Pascal歐洲科學院材料科學獎(2017年),國家化學科學與技術研究獎(2018年) ),Hermanos Elhuyar-Hans Goldschmidt獎(2019年),當選為西班牙皇家物理和自然科學學院(2015年)和歐洲科學院院士(2017年)的記者。他是英國皇家化學學會和美國光學學會會員,並且是西班牙皇家化學和物理學會膠體和界面部門的主席。他曾擔任ACS期刊Langmuir(2009-2016)的高級編輯,ACS Omega首席編輯(2016-2018)💼,現任ACS Nano副主編。 Liz-Marzán還擔任10種期刊的編輯委員會成員,其中包括科學編輯評審委員會.Liz-Marzán課題組共有30名在校博士生和50名博士後,4名全職教授,14名在學術界擔任終身職位,2名在工業界擔任高級研究員👨‍👩‍👧。7人擔任終身職位,4人擔任在大學和研究中心的專業技術人員🦁。Luis M. Liz-Marzá被認為是膠體化學在納米等離子體技術(當今擁擠)領域應用的世界領先者之一。Luis M. Liz-Marzá是金屬納米粒子膠體合成的先驅之一,在控製此類納米粒子的形態以及裁剪納米粒子表面化學和組裝方面有著重要的貢獻。
 Luis M. Liz-Marzán is a PhD from the University of Santiago de Compostela  and has been postdoc at the van't Hoff Laboratory, he is currently Ikerbasque Research Professor and Scientific Director of the Basque  Centre for Cooperative Research in Biomaterials (CIC biomaGUNE), in San Sebastián.Since 2015 he is also the PI of the CIC biomaGUNE node of the Biomedical Research Networking  Center: Bioengineering, Biomaterials and Nanomedicine (Ciber-BBN).  Luis Liz-Marzán has co-authored over 450 research articles and reviews, which have received  over 40000 citations, with an h-index of 102, being named as Highly Cited Researcher (2014- 2018). He has also co-authored 18 book chapters and is co-inventor of 8 patents. He delivered  250+ invited lectures at conferences and 200+ seminars in 25 different countries, and  organized 21+ international conferences. He has been awarded two consecutive ERC  Advanced grants (2011- 2016; 2018 - 2023), and received numerous research prizes, such as  1 CURRICULUM VITAE (maximum 4 pages) the Humboldt Research Award (2010), Dupont Prize for Science (2010), Burdinola Award  (2011), the inaugural ACS Nano Lectureship Award (2012) and the Langmuir Lectureship  (2012), the ECIS - Rhodia Award (2013), the Medal of the Spanish Royal Society of Chemistry (2014), the Francqui Chair (2014-2015), the Georges Smets Chair (2015), the Rey Jaime I Award in Basic Research (2015), Blaise Pascal Medal in Materials Science of the European  Academy of Sciences (2017), National Research Award on Chemical Science and Technology  (2018), Hermanos Elhuyar-Hans Goldschmidt Award (2019) and was elected correspondent member of the Royal Academy of Exact, Physical and Natural Sciences of Spain (2015) and  Fellow of the European Academy of Sciences (2017). He is a Fellow of the Royal Society of  Chemistry and of the Optical Society of America, and has been President of the Colloids and Interfaces Division of the Spanish Royal Societies of Chemistry and Physics. He has been Senior Editor of the ACS journal Langmuir (2009-2016), inaugural Editor in Chief of ACS Omega (2016-2018) and currently is Associate Editor of ACS Nano. Liz-Marzán also serves as editorial board member of 10 journals, including the Board of Reviewing Editors of Science.Out of 30 supervised PhD students and 50 postdocs, 4 are full professors, 14 hold tenured positions in Academia, 2 are senior researchers at Industry, 7 are on tenure track positions and 4 have permanent jobs as specialized technicians at universities and research centers.Luis M. Liz-Marzán is considered as one of the world leaders in the application of colloid chemistry to the (nowadays crowded) field of nanoplasmonics. Liz-Marzán has been one of the pioneers in the colloidal synthesis of metal nanoparticles, with highly relevant contributions toward the control over the morphology of such nanoparticles as well as toward tailoring nanoparticle surface chemistry and assembly.
 
【講座信息】
納米等離子體激元可以定義為使用尺寸遠小於輻射波長的材料研究光的操縱的一種科學。該技術可廣泛用於傳感和診斷等各種領域。納米彈性體的一個重要組成部分是納米結構材料,通常是由貴金屬製成的🛍,由於它們能夠支持自由(傳導)電子的相幹振蕩📙,因此可以非常有效地吸收和散射光。眾所周知,150多年前“精細分裂”金屬被研究發現其具有顯著光學響應🟠👉🏿,但最近開發的復雜表征技術和建模方法已經大大重新激發了該領域的研究熱點🙏🏿。其中一個最重要的發展就是納米等離子體製造方法的創新研究,這使我們能夠精確控製納米結構金屬的成分和形態🦹🏿。膠體化學法特別具有簡單和大規模生產的優點,同時可以改變其中的參數來引導納米顆粒形態,以及引導表面性質和後續加工過程⚔️。
本次報告將基於一系列的納米等離子體製造方法,這些方法可以微調納米等離子體構建塊的形態,最終目標是改善其光學特性及其在傳感應用中的性能。本次報告稿還會列舉幾個關於改進的合成和受控自組裝成納米結構材料的實例𓀘,其主要測納米結構是金納米顆粒🖇。
Nanoplasmonics can be defined as the science studying the manipulation of light using materials of size much smaller than the radiation wavelength. This technology finds applications in various fields including sensing and diagnostics. An essential component of nanoplasmonics are the nanostructured materials, typically noble metals, which can very efficiently absorb and scatter light because of their ability to support coherent oscillations of free (conduction) electrons. Although the remarkable optical response of “finely divided” metals is well known since more than 150 years ago, the recent development of sophisticated characterization techniques and modeling methods has dramatically reactivated the field. An extremely important pillar on which the development of nanoplasmonics has been based comprises the impressive advancement in fabrication methods, which provide us with an exquisite control over the composition and morphology of nanostructured metals. Colloid chemistry methods in particular have the advantage of simplicity and large scale production, while offering a number of parameters that can be used as a handle to direct not only nanoparticle morphology but also surface properties and subsequent processing.
This talk will be based on a selection of fabrication methods that allow fine tuning of the morphology of nanoplasmonic building blocks, with the ultimate goal of improving their optical properties and their performance in sensing applications. Several examples will be presented regarding improved synthesis and controlled self-assembly into nanostructured materials, focusing mainly on gold nanoparticles.
 
意昂平台专业提供:意昂平台💫、意昂意昂官网等服务,提供最新官网平台、地址、注册、登陆、登录、入口、全站、网站、网页、网址、娱乐、手机版、app、下载、欧洲杯、欧冠、nba、世界杯、英超等,界面美观优质完美,安全稳定,服务一流👩🏻‍✈️,意昂平台欢迎您。 意昂平台官網xml地圖