一、學校簡介
麻省理工學院(Massachusetts Institute of Technology)是世界著名私立研究型大學⚛️,截止至2018年10月,麻省理工學院的校友、教職工及研究人員中,共產生了93位諾貝爾獎得主(世界第六) 、8位菲爾茲獎得主(世界第八)以及25位圖靈獎得主(世界第二)。MIT素以頂尖的工程學而著名,擁有眾多頂級實驗室🏋🏿♀️,位列2016-17年世界大學學術排名(ARWU)工程學世界第一🦹🏽,被稱為工程科技界的學術領袖🧑🏻🌾🥙。QS2019材料科學排名全球第一。
二、課程簡介
麻省理工學院冬季學術課程共兩個主題🪈:
1)New Materials Design & Machine Learning
麻省理工學院材料科學與工程學院(DMSE, MIT)核心實驗室主辦🧑🏻💼🌮,由麻省理工學院人工智能/材料科學學科的核心教授擔綱課程設計和教學工作。教學團隊包括多名來自麻省理工學院人工智能實驗室🫸🏿🙄、材料科學與工程實驗室等核心科研教學團隊的資深教授。課程將重點關註用機器學習的方法反向發現新材料,以及材料科學與其他交叉學科的前沿研究方向等內容,以Project Based Learning (PBL)教學法展開🍱🙅🏿,教學課程與麻省理工學院同期開設的相關學科課程內容同步🪛。
2)MIT Artificial Intelligence for Financial Engineering
麻省理工學院斯隆管理學院(MIT Sloan School of Management)人工智能研究團隊主辦,由麻省理工學院人工智能/金融工程學科的核心教授擔綱課程設計和教學工作。教學團隊包括多名來自麻省理工學院人工智能實驗室和斯隆管理學院等核心科研教學團隊的資深教授。課程將重點關註人工智能對未來商業社會的影響與挑戰👩🏼🔧,以及人工智能與商業管理的交叉學科等內容🐚。課程將以Project Based Learning (PBL)教學法展開,教學課程與麻省理工學院同期開設的相關學科課程內容同步👩🏽🦲。
麻省理工學院斯隆管理學院被認為是美國最傑出的商學院之一。麻省理工學院斯隆管理學院在2005年被《美國新聞與世界報道》雜誌評選為美國排名第四的商學院,僅次於哈佛商學院👆🏼、斯坦福大學商學院和賓夕法尼亞大學沃頓商學院。自從1914年創辦以來🛀🏼,麻省理工學院斯隆管理學院為九十多個國家培養了一萬六千多名人才,其中百分之五十的人是高級管理人員,百分之二十的人是公司企業總裁🥾,另外還有六百五十多人創辦了自己的公司。美國著名大公司惠普電腦公司,波音飛機公司和花旗銀行的總裁都是這所商學院的畢業生。
2020寒假MIT New Materials Design & Machine Learning課程分為Pre-learning🈸、On-campus Course、Post-learning三大部分🧘🏿♀️,共計74個課時🧑🦱🏝。
Pre-learning共計24個課時,須完成指定閱讀材料及相關作業。
On-campus Course由兩大模塊組成——學術模塊和探索模塊🫅。
學術模塊共計50個課時,其中核心教學部分24個課時及實踐部分26個課時,核心教授部分以教授及助教的專業課為主,實踐部分包括學術項目🚊、小組討論、小組作業、核心實驗室/機構探訪等🔟,在學習專業課程的同時📲,學生將有機會進入MIT核心實驗室或波士頓當地行業領先企業👩❤️👨🏆,更加全面前瞻性地了解相關技術商業化的發展進程。
探索模塊由文化探訪、Fellowship及主題Panel組成。波士頓作為美國東部的重要城市,是美國的教育之都、歷史之都、藝術之都👾、體育之都,在同學們學習及探索波士頓的同時,由波士頓當地大學生組成的Fellowship將為學生提供全程的輔導及協助,幫助同學們深入了解波士頓的當地生活及文化;同學們還將有機會參加針對職業發展🐢、科研、就業⏱🔢、創業等主題方向的Panel,為同學們未來發展提供新思路及指導意見。
三、核心課程及簡介
1)New Materials Design & Machine Learning
Course Description:
Computational Materials Science involves and enables the visualization of concepts and materials processes which are otherwise difficult to describe or even imagine. Among other things, this field of allows materials to be designed and tested efficiently.
Computational and analytical techniques are necessary for materials science and engineering topics, such as material structure, symmetry, and thermodynamics, materials response to applied fields, mechanics and physics of solids and soft materials. Presents mathematical concepts and materials-related problem-solving skills alongside symbolic programming techniques. Symbolic algebraic computational methods, programming, and visualization techniques; topics include linear algebra, quadratic forms, tensor operations, symmetry operations, calculus of several variables, eigensystems, systems of ordinary and partial differential equations, beam theory, resonance phenomena, special functions, numerical solutions, statistical analysis, Fourier analysis, and random walks.
Academic Syllabus:
The course begins with basic reviews of the foundations of Computational Materials Science before moving on to a more rigorous development of the theories and methodologies that underlie this novel field. Students will also have the chance to explore the applications of the theoretical portions of the program through lectures and site-visit opportunities.
Academic Module:
Module 1: Introduction of New Materials
Module 2: Advanced Machine Learning for Materials Science
Module 3: New Materials Intelligence
Module 4: Computer-driven design of molecular materials
2)MIT Artificial Intelligence for Financial Engineering
Course Description🏋🏽:
In order to compete in the rapidly developing financial sector, it is becoming increasingly necessary to make use of Machine Learning and Artificial Intelligence technologies to analyze massive amounts of data and predict trends.
Financial Engineering is a multidisciplinary field drawing from finance and economics, mathematics, statistics, engineering and computational methods. Machine Learning and Artificial Intelligence play a significant role in the creation of models and trading ideas from Renaissance and similar funds.
The main goal of this program is to provide the knowledge and practical skills necessary to develop a strong foundation on core paradigms and algorithms of Machine Learning and Artificial Intelligence, with a particular focus on applications of Machine Learning to various practical problems in Finance.
Students will learn the foundational methods in this field of study as well as have extensive opportunities to understand its implementation in real financial contexts.
Academic Syllabus:
With a focus on the organizational and managerial implications of these technologies, rather than on their technical aspects, this course will arm students with the knowledge and confidence students need to pioneer its successful integration in finance. The emphasis of this program will be on the use of simple stochastic models to price derivative securities in various asset classes including equities, fixed income, credit and mortgage-backed securities. This program will also consider the role that some of these asset classes played during the financial crisis.
Methodologies in artificial intelligence and data analysis will be introduced, after which students will gain an in-depth understanding through studies of applications of these technologies in innovative workshops and company visits.
Academic Module:
Module 1: Machine Learning and Artificial Intelligence in Finance
Artificial intelligence in finance is transforming the way we interact with money. AI is helping the financial industry to streamline and optimize processes ranging from credit decisions to quantitative trading and financial risk management.
Module 2: Financial Engineering and Arbitrage-based Pricing Models
The objective of the module is to introduce students to the modern framework for pricing of financial securities, including fixed income assets and derivatives. We cover the fundamental valuation concepts, pricing models, and methodological tools and applications.
Module 3: Financial Engineering and Risk Management
Financial Engineering is a multidisciplinary field drawing from finance and economics, mathematics, statistics, engineering and computational methods. The emphasis of FE & RM Part I will be on the use of simple stochastic models to price derivative securities in various asset classes including equities, fixed income, credit and mortgage-backed securities. We will also consider the role that some of these asset classes played during the financial crisis.
四、課程形式及考核標準
課程形式🧎🏻:
Pre-learning(4周) |
On-campus Course(2周) |
Post-learning(4周) |
|
|
|
考核標準:
學生在麻省理工學院學習期間需通過兩次項目規定的學術內容考核,項目考核評定標準如下🎊📎:
* 按規定完成學習計劃和任務且成績合格者將獲得由官方頒發的課程學習證書
五、課程教學團隊
1)New Materials Design & Machine Learning
1.W. Craig Carter
POSCO Professor, Department of Materials Science and Engineering, MIT
MacVicar Faculty Fellow
Research Interests: Computational Materials Science, Energy, Energy Storage
2. Markus Buehler
Department Head, Department of CEE, MIT
Jerry McAfee (1940) Professor in Engineering
Research Interests: Materials science and mechanics of natural and biological protein materials (materiomics)
3.Rafael Gomez Bombarelli
Toyota Professor, Department of DMSE, MIT
Research Interests: Computational Materials Science
4.Boris Kozinsky
Professor, John A. Paulson School Of Engineering and Applied Sciences, Harvard University
Research Interests: Computational Materials Science
2)MIT Artificial Intelligence for Financial Engineering
1.Leonid Kogan
Nippon Telegraph & Telephone Professor of Management
Professor, Finance, MIT Sloan School of Management
Director, MIT Laboratory for Financial Engineering
2.Andrew W. Lo
Charles E. and Susan T. Harris Professor, MIT Sloan School of Management
Director, MIT Laboratory for Financial Engineering
3.Kalyan Veeramachaneni
Principal Research Scientist, Department of EECS, MIT
Research Interests: Big data; Human data interaction; Impactful domains
六👬🔽、項目特色
包括但不限於實踐成果後續跟進、助理研究員申請👨🏼🌾🐶、長期項目跟進等。
六、報名條件
報名須知:本項目總名額20人,報名截止日期2019年12月6日。項目方將在報名截止後統一組織簽證辦理,未辦理護照的同學請盡快於截止日期前辦理護照。
七、項目時間
Pre-learning:2020年1月4日-2020年1月31日
(以具體通知日期為準,一般為出發前1個月)
On-campus Course🫷🏻:2020年2月1日-2月15日
(以上項目日期均為北京時間👰,包含從國際航班起飛至抵達國內全程15天。)
Post-Learning🏂:2020年2月16日-3月8日
八🧑🏽⚖️、項目費用
1. 項目費: 5450 USD/人
2. 意昂平台將根據申報情況擇優進行資助
項目費包含:
(1)項目課程費用、項目實驗室實驗器械及材料費用🫧、學習資料費用
(2)項目期間住宿費用(住宿標準為兩人一間)
(3)餐飲費用(包含每日早餐🧏🏻♀️、部分午餐,共計20餐)
(4)在美交通(波士頓的接送機費用♻、在美期間的公共交通費用)
(5)文化探索(觀看當地體育比賽的費用、參觀波士頓當地其他學校、博物館👩🏻🍳、自由之路等景點的門票等)
(6) 國際保險費用
(7)美國簽證申請協助(包括項目主辦方為學生辦理邀請函🚴🏽🥡、簽證用行程單等資料、面簽培訓指導等👨🏿🍳,此項為項目整體服務的一部分,已有美簽的不單獨退還。)
項目費不包含🍡:
(1)國際往返機票費用;
(2)個人美國簽證費用🚜;
(3)銀行國際電匯手續費♻👨🏼💼;
(4)個人花費;
九、報名材料
十、報名流程
3. 完成線上報名並獲得錄取郵件後🛳,向意昂平台提交:
1)紙質版《意昂官网在校研究生出國(境)申請表(新版)》(詳見附件一)
2)外語水平證明(四、六級/雅思/托福等成績單復印件)
3)在學期間各類獎勵/獲獎證明(復印件)
十一🖐🏿、項目咨詢
項目方咨詢微信👞:Bobbi,微信號:BostonMind
意昂平台:張老師 010-68913589
意昂平台培養辦公室
2019年11月25日